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Introduction

During the period of the 1960's and into the early

1970's, numerous investigations (refs. 1 to 13) were con-

ducted concerning the feasibility of using active radia-

tion shielding methods, such as afforded by electromag-

netic fields, as alternatives to the conventional practice
of utilizing massive quantities of bulk matter to atten-

uate space radiations. These active shielding concepts

fell into four distinct categories: (I) electrostatic fields;

(2) plasma shields; (3) confined magnetic fields; and

(4) unconfined magnetic fields. In all these investiga-

tions (refs. 1 to 13), consideration was given to shielding

against protons or electrons, or both. Shielding against

galactic heavy ions was either not considered, or was

dismissed as a problem because of their relatively low
fluence levels. Recently, there has been some renewed

interest in active shielding methods (refs. 14 to 16).
The design of reference 14 used an unconfined mag-

netic field to shield against all charged particles up to

15 GeV. Shielding against charged particles with up to
10 GeV of kinetic energy using either electrostatic fields

or unconfined magnetic fields was considered in refer-

ence 15. The only study in which shielding for a spe-

cific galactic heavy ion of interest was investigated was

that of reference 16, which considered shielding against
1-GeV/nucleon 56Fe ions using confined-magnetic-field
configurations.

Previous electrostatic shielding studies were limited

to consideration of protons from solar flares and the in-

ner Van Allen belt, along with electrons from the solar

wind and/or Van Allen belts (refs. 1, 2, 4, 6, and 15).
Felten (ref. 3) considered only interplanetary protons

and electrons (ignored the radiation belts). A de-

tailed analysis by the Soviets considered only Van Allen
belt electrons (ref. 8). Although several of the studies
were favorable toward the use of electrostatic shields

(refs. 6, 8, and 15), most were not (refs. 1 to 4). The

major shortcomings from the latter included: (1) ex-

tremely high voltages required; (2) vacuum and insu-
lation breakdown characteristics, which limit minimum

structural dimensions; (3) inherent instability of con-

centric sphere arrangement, which is required for shield-

ing against particles of opposite charge; and (4) produc-

tion of bremsstrahlung radiation by deflected charged
particles.

In this work, attention is specifically focused on
using electrostatic fields to shield spacecraft from the

galactic heavy ions of major radiobiological interest.

In particular, pertinent shield physical parameters are

derived and conclusions about electrostatic shielding

feasibility are drawn from them. The symbols used in
this paper are defined in a list after the references.

HZE Particles

Primary cosmic-ray particles with a charge number

Z greater than 2 and kinetic energies that can pene-

trate at least 1 mm of spacecraft or spacesuit shielding
(a minimum energy of 10-35 MeV/nucleon depending

upon the ion) are usually considered to be HZE parti-

cles (ref. 17). The abbreviation "HZE" denotes "high-Z
and -energy." Typical fluxes of galactic HZE particles

are _0.05 nuclei/cm2-sec (ref. 18). HZE particles are

known to produce unique biological events called mi-

crolesions. Todd (ref. 18) defines a microlesion as a
region of focal cellular destruction where there is a core

of dead cells surrounded by a penumbra of nonlethally

damaged cells. The typical core length is greater than

10 cell diameters with a penumbral radius of about

10 #m. In the penumbra, the delta-ray doses range from
25 to several hundred rads. Reference 18 is an overview

of the known biological effects of these microlesions.

The lowest Z-particles which produce microlesions

of the type described here are 2°Ne ions (ref. 18). When
weighted over their track length, however, the dominant

HZE particles of radiobiological interest are 56Fe ions.

They comprise over 50 percent of the weighted relative

abundance of ions heavier than carbon (ref. 17). Todd

(ref. 18) estimates that about 27 000 microlesions per
cm 3 of tissue would occur for 90 days in geostation-

ary orbit. Most of these, if not all, would be due to

56Fe nuclei. Since it is known that high-LET (linear
energy transfer) particles, such as g6Fe, are highly car-

cinogenic, especially for chronic low exposures (ref. 19),
and exhibit residual damage effects in skin many years

after exposure (ref. 20), the shield analyses in this work
focus on these 56Fe ions of interest.

In the vicinity of the Earth, the flux of Fe nuclei

(ref. 17), is approximately 55 per cm 2 per day for ener-

gies between 100 MeV/nucleon and 1 GeV/nucleon. For

energies above 1 GeV/nucleon, the flux is _33 nuclei per
cm 2 per day. Using an assumed energy dependence of

the particle flux of (ref. 21)

n (> Ec) o( Ec 15 (1)

yields an Fe flux of 20 nuclei per cm 2 per day for

E¢ > 1.4 GeV/nucleon and a flux of 12 nuclei per
cm 2 per day for Ec > 2 GeV/nuclei. For purposes

of analysis, the energy cutoff Ec at 1.4 GeV/nucleon,
which yields a flux of 20 nuclei per cm 2 per day, was

arbitrarily chosen. No attempt to correlate this flux

to a biological dose will be attempted since the usual

concepts of absorbed dose, RBE, and Quality Factor are

almost impossible to use for assessing biological hazards

due to HZE particles (ref. 18).

Concentric-Spheres Shielding Analysis

Since HZE particles are positively charged, electro-



staticrepulsiondictatesthat theelectric-fieldintensity
vectorE must point outward away from the shielded

volume. The simplest shield configuration would be to

cover the spacecraft with a layer of positive charge at a

potential large enough to repel all HZE particles with

energies up to the desired cutoff. This situation is de-

picted in figure 1, where for simplicity, a spherical space-
craft of radius a is assumed. For a 56Fe nucleus with

a cutoff energy of 1.4 GeV/nucleon, the total kinetic

energy T is 78.4 GeV. Since the iron nucleus possesses
a charge of +26e (e is the unit of electric charge), the

required repulsive potential at r = a, given by

T

V(a) = _ (2)

is 3.02 GV. This voltage is approximately 2 orders

of magnitude larger than the current state of the art

in electrostatic voltage generation. Present tandem
Van De Graaff accelerator voltages are less than 30 MV

(ref. 22). Even if a potential of 3 GV were attain-
able, a single spherical shell arrangement containing

positive charge would accelerate nearby space elec-

trons to energies _3 GeV. These relativistic electrons,

upon striking the spacecraft structure, would gener-

ate bremsstrahlung radiation fields inside the spacecraft
which would be lethal to the astronauts (ref. 3).

Shielding against radiations of both types (posi-

tively charged and negatively charged) requires concen-

tric spherical shells as shown in figure 2. From elemen-
tary electromagnetism, the potential can be written in

terms of the charges as

(3)

47reoa 47reob -

Y(r) = Qa qb (a < r < b) (4)+

Qa h- Vb (r > b) (5)
47rcor

Denoting the potential at r : a as V_ and at r : b as Vb
enables equations (3) to (5) to be written equivalently
as

( ) /o)
bVb- _V_ ab (_ < r < b) (7)

V(_) _ _

!v_ (_ _>b) (8)

Equally and Oppositely Charged Spheres

Since Q_ and Qb must have opposite polarity (to

repel oppositely charged particles), one possible config-

uration is Q_ - Qb. In this case,

V_ (r _< a)

V(r)= --aVa (b-r)r_-a (a<r<b)

o (r > b)

where

and

(9)

(lO)

(11)

Va-47r_ oQa (!__) (12)

Vb -- Qa - Q-_ -- 0 (13)
47reob

Note that this shield does not repel electrons since there

is no field outside the outer shell. Neither, however,
does it attract them as was the case with the single-

conductor configuration discussed previously.

Unequally and Oppositely Charged Spheres

To shield low-energy electrons (_1 MeV) using the

outer sphere, there must be a negative potential on the
shell at r = b with

[Vb[ > 1 MV (14)

From equation (5), Vb negative requires that

[Q_I < IQb[ (15)

where equations (3) to (8) again apply. HZE particles
incident upon the outer shell will, because of their

positive charge, acquire an additional kinetic energy

given by

Tb = Ze IVbl (16)

For 56Fe with I_1 = 1 MV, for example, equation (16)

yields Tb = 26 MeV, which is a negligible addition to

the ion kinetic energy, and will be ignored. Thus, to

repel a 56Fe nucleus, with a maximum kinetic energy of

1.4 GeV/nucleon, we require Va >_ 3.02 GV as before.

Vacuum Breakdown of Electric Field

As a result of vacuum breakdown, the magnitude of

the electric-field intensity at the surface of either shell

is limited to a value (ref. 2)

Em_ = 3 x 107 V/m (17)

From elementary electrostatics, the electric-field inten-

sity is related to the potential as

= -_)V (r) (18)



Neartheoutersurfaceoftheinnershell,equations(18)
and(7)yield

/,0/
where ÷ is the unit radial vector and/_a points radially

outward since Igbl < IVol.
Similarly, near the inner surface of the outer shell,

equations (18) and (7) yield

£b,_nor- g ÷ (20)

so that, when equations (19) and (20) are compared,

a 2
Eb,i .... _-__Ea (21)

Since b > a, it is apparent that

£a )" £b,i .... (22)

and that the limiting electric-field intensity is on the
outer surface of the inner shell.

On the outer surface of the outer shell, equa-

tions (18) and (8) yield

Yb.
Eb,outer _-- _-r (23)

This intensity points radially inward since Vb is nega-
tive.

For /_b,outer = E .... the minimum value of b is

Yb
bmin - (24)

which, for Vb = 1 MV and Emax : 3 x 107 V/m, yields

b,n_, = 0.03 m.

Again on the outer surface of the inner shell, equa-

tion (19) can be used to establish the relative sizes of

the concentric shells and to specify the minimum-shell

radii necessary to prevent vacuum breakdown. If

£a --_Emax (25)

then equation (19) yields

Vo - Vb
(26)

This equation relates the radii to the specified poten-
tials and the vacuum breakdown field intensity. Solu-

tions to equation (26) for a and b, where Va = 3.02

GV, Vb = --1 MV, and Em_x = 3 x 107 V/m, are listed

in table I. Although the minimum radius of the inner

shell is approximately 100 m, the resultant outer shell

is quite large. The minimum radius of the outer shell

occurs when a = 200 m. This would probably be the

minimum-mass shield if both shells were approximately
the same thickness and constructed of the same mate-

rial. Finally, for a = 200 m and b = 400 m, the required
charges on the two spherical shells can be calculated

from equations (3) and (5). Clearly, these minimum

dimensions suggest that electrostatic shielding is not

reasonable for small spacecraft.

Stability and Other Considerations

As shown in references 1 to 3, any deviation from

concentricity creates a redistribution of charge on the
surfaces of the spheres, such that a net force of attrac-

tion is established between them. Hence, rigid support

members are required to maintain sphere separation.

When selecting possible support members, consid-

eration of their voltage breakdown characteristics must

be included, because any supporting structure between

the two spheres would yield the limiting electric-field in-

tensity rather than the vacuum. Derivations of the net

force between nonconcentric spheres are given in refer-
ences 1 and 2. Finally, apertures for personnel access,

attitude control, and propulsion would provide possible

sites for breakdown of the generated fields (ref. 3). In

addition, there could be a severe shock hazard for any

extravehicular activity by the astronauts (ref. 4).

Summary of Results

To shield against the major galactic heavy ion of ra-

diobiological interest, 56Fe, while simultaneously shield-

ing against low-energy electrons of the Van Allen belts

and/or solar wind, a concentric-sphere shield arrange-

ment is necessary, since these particle types are oppo-
sitely charged. For the 56Fe nuclei, shielding from par-

ticles with kinetic energies up to 1.4 GeV/nucleon was

arbitrarily chosen for analysis purposes. The potential

required to accomplish this was 3.02 GV. For the outer

sphere, shielding from electrons with kinetic energies of

approximately 1 MeV required a much smaller potential

(approximately 1 MV).
The physical dimensions of the concentric sphere ar-

rangement were dictated by considerations of electrical

breakdown of the vacuum at an electric-field intensity

of 3 x 107 V/m. As shown in table I, the minimum

allowable inner-shell radius was approximately 100 m if

the outer-sheU radius was extremely large (on the order

of 104 m or more). The minimum-mass shield arrange-

ment (table I) appears to be one where the inner shell
has a radius of 200 m and the outer shell a radius of

400 m.

Concluding Remarks

The use of electrostatic fields to shield spacecraft



against galactic heavy ions has been analyzed for in-

cident high-energy iron nuclei which are the dominant

high-energy heavy-ions (HZE particles) of radiobiolog-

ical interest. The potential required to repel these

ions was found to exceed current state of the art in

electrostatic-field generation by approximately 2 orders

of magnitude. This requirement essentially eliminates

the concept as a viable alternative to bulk-material

shielding. In addition, electrical breakdown consider-

ations were shown to limit the minimum physical size

of the shield configuration to dimensions on the order

of hundreds of meters. This limitation clearly renders

the concept infeasible for small exploratory-type space-

craft, even if the lack of an adequate electrostatic-field

generation capability were to be overcome in the future.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

July 31, 1984
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Symbols

a

b

brain

e

Eb,inner

/_b,outer

n(> Ec)

Q(2

radius of inner concentric shell, m

radius of outer concentric shell, m

minimum radius of outer shell, m

unit of electronic charge, 1.6 × 10 -19 C

electric-field intensity vector, V/m

electric-field intensity on outer surface of

inner shell, V/m

electric-field intensity on inner surface of

outer shell, V/m

electric-field intensity on outer surface of

outer shell, V/m

cutoff energy, GeV/nucleon

magnitude of electric-field intensity for

vacuum breakdown, 3 × 107 V/m

number of nuclei per cm 2 per day having

an energy greater than Ec

charge on inner shell, C

Qb

r

÷

T

%

V(r)

y_

vb

Z

Co

charge on outer shell, C

arbitrary-position radius vector, m

unit radial vector

ion total kinetic energy, GeV

defined in equation (16), MeV

electrostatic potential, V

electrostatic potential on inner shell, V

electrostatic potential on outer shell, V

ion charge number

spatial gradient operator, m l

permittivity of free space, 8.854 × 10 -12

farads/meter

Abbreviations:

HZE high-energy heavy ion

LET linear energy transfer

RBE relative biological effectiveness

Arrows over symbols indicate vectors.



TABLEI. CONCENTRICSHELLPARAMETERS

a/b a, meters b, meters
0.000

.001

.010

.100

.400

.500

.600

.990

100.03

100.13

101

111

167

200

250

10 003

OO

100130

10100

1111
417

400

417

10 104

6



Qa,Va > 0

Figure 1. Single, positively charged spherical electrode for shielding from galactic heavy ions.

Qb,Vb < 0

Figure 2. Concentric. oppositely charged spherical electrodes for shielding against galactic heavy ions (inner electrode)
and electrons (outer electrode).
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